DEVELOPMENT OF SECONDARY FREE-CONVECTION
CURRENTS IN FORCED TURBULENT FLOW
IN HORIZONTAL TUBES

A. F. Polyakov UDC 532.517.4

The problem of the development of secondary free-convection currents in forced turbulent
flow in horizontal tubes for relatively weak thermal gravitation influence is analytically
solved. The results of the solution are compared to experimental data.

Experimental data on local heat transfer [1] and on velocity and temperature profiles [2, 3] demon-
strate that thermal gravitational forces exert a substantial influence on turbulent flow and heat exchange
in horizontal tubes. Thermogravitational forces can affect the structure of the turbulence, which results
in a variation in momentum and heat transfer and directly affects the averaged flow, which leads to the
formation of secondary free~convection currents (as is the case in viscous-gravitational flow). Secondary
free-convection currents for a turbulent flow may substantially differ from the pattern of secondary cur-
rents for viscous-gravitational flow in horizontal tubes due to high anisotropy and inhomogeneity of the
momentum and heat transfer.

The boundaries and nature of the onset of the influence of thermogravitational forces on turbulent
momentum and heat transfer have been examined [4] assuming that they do not directly influence the aver-
aged flow. The threshold for the influence of thermogravitational forces on the velocity, temperature,
frictional drag, and heat-transfer fields were clarified. The formation of secondary flows was not dis-
cussed in this article.

In this work the development of secondary free-convection flows in forced turbulent motion of an
incompressible liquid in horizontal tubes will be discussed. The problem is solved by assuming that ther~
mogravitational forces do not affect turbulent transfer. Conditions will be examined for a weak influence
of thermogravitational forces, i.e., at relatively low Grashof numbers Gr =g8q Wd“/ Al

By stating the problem this way we are able to clarify the contribution of mass forces for averaged
motion and to approximately describe the flow at relatively low Gr.

We will write the kinetic equation for the eddy component as follows:

e dwy , w Owg | ey 1 8wy, du (1)
U v T T T T T T e wm
u O, du , re,y | oy , Brarn . Lot ]
+ O GG T g T e T VA% T [ ar SN+ 5005 @

where r is the current radius; x is the axial coordinate, counted off from the onset of heating; ¢ is an
angle measured from the upper generatrix; t is temperature; u, v, and w are the axial, radial, and fan-
gential components of the velocity, respectively; v is the kinematic viscosity coefficient; and 8 is the
thermal-expansion coefficient.
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—! The problem will be solved under the following assumptions.

] 1. The process is steady-state. 2. The physical properties of the

liquid are constant except for a variation in density that can be faken

Wi
w 1g?
v-10? A —— ) . . . .
into account in the mass force term. 3. Flow is stabilized, i.e., the
&

0 variation of all the hydrodynamic variables in the longitudinal coor-
% / dinate are negligibly small. 4. Molecular transfer is negligibly small
5 / in comparison with turbulent transfer. 5. Turbulent vorticity trans-
/ /ﬁ/z ! 2 turbulent vorticity transfer coefficient is equal to the turbulent mo-
~10 | | mentum transfer coefficient and is described by Prandtl's dependence
/ e/v=0.4y. 7. Prandtl's turbulence number Pr=1.9. The heat flux
1 density on the wall is constant and the flow region beyond the onset

7 of the heated section where 8t/9x = const is considered.
g 0.7 0% 05 48 14

fer is represented in a gradient form, i.e., viex'= —€dwy/0r. 6. The

—

Equation (1) in linearized dimensionless form, taking into ac-

Fig, 1 count the above assumptions, takes the form
9 AN .
—-(RY 6_> =] (§£°+) sin ¢ (2)
where-T'=1.25 Gr/ReRes?Pr is a small parameter,
od 1T 2 v (3)
Q= 3= = g [5m BW) — 5]

Tyt = (tw—-t)opcpv*/qw is the initial temperature distribution characteristic for forced flow without the in-
fluence of thermogravitation; R=2r/d=1—7Y is the current dimensionless radius; d is the tube diameter;
=VTy/p is the velocity of friction; V=v/u and W=w/u; uis the mean rate of flow; Qy is the heat flux
denSIty on the wall; Re= ud/v, Rey =v4d/p is the Reynolds number, Pr is Prandtl's number; p is density;

and p is specific heat.

Suppose the temperature profile Tyt is given by
Tyt =221In7 x B(Pr) (4)
where B(Pr) is the Prandtl number function described according to data [5] by the expression
B =5In((5Pr -+ 1)/ 30) - 8.55 -+ 5Pr ;
1 =vyy/v is a dimensionless coordinate counted off from the wall.
Solving Egs. (2) and (4), we find an expression that describes the distribution of the eddy component:

Q. =——I‘{111nY)2+DlnYJ—C}sm(p (5)
D—-Z2lnna+B(Pr) -4.51g Re + B (Pry —5, n, = v d/ 2

The boundary condition has the form
=0, R-—0

=mn/2

Using the definition of @y from Eq. (4) and the continuity equation

d(RV)/ R + oW /dp =0 (6)
we write down an equation for determining the tangential component of the velocity W:
9 W 9
BE R (RW) + = aqu =a_E(R2Q*c) (7
Representing the desired function W in the form of a product of two functions,
W = F(R)sin ¢ (8)
the equation in partial derivatives of Eq. (7) is transformed into an ordinary differential equation,
@(RF)  dRF) (RF) 1 d_ (9)
aie T R4R R R 4R (72 4)

where A=y /sin @.
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The general solution of Eg. (9), according to [6], can be represented in the form
F_—{SAdB—;— SR?AdR+cz+ca7%_} (10)

Substituting the expression for A= Qg /sin ¢ from Eq. (5) in Eq. (10) and integrating, we find an ex-
pression for the component of velocity W:

oo - 1 n—1
W =PFsing=T >} 2 2{rn +-1) R + (n +2) R™ [0—2.22%]sincp (11)
k=1
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where the decomposition

In(l —R)=— X R*/n

n=1

is used in integrating.

L i
To find the constants C;, C;, and C; we use the following conditions: 1) SFdR =0; 2) F| gy = 0;
0
3) when R=0, F is finite.

Using Eq. (11), the continuity equation (6), and the boundary condition V| R=1=0, we find an expres-
sion for the radial component of the velocity,

n—1

B O n—(n 1) R4+ B 1 1
VT3 Elte s [D—Z.Z;—k—]coscp (12)

n=i

Figure 1 depicts the distribution of the tangential component of velocity W in the horizontal center-
line plane and the radial component of velocity V in the vertical center-line plane calculated for Pr=0.7
(curves 1) and Pr=3.5 (curves 2) and Re=10* and Re=5- 10* when I' =10~2. The difference of the curves
for Re=10* and Re =5 - 10% is insignificant, so that lines are drawn in the figure constructed for the mean
values for the given interval of Re numbers. When R =0, the derivatives 9V /8R and 0W/0R are finite.
This is due to the use of Eq. (3) in the calculation which does not satisfy 8t/9r| =) =0.

The distribution of the axial-velocity component u and of temperature will be found from the equations

40 6u duo 1 opP (13)
re=—=v ——
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in which convection terms (the first terms in the right sides of the equations) are written under the as-
sumption that u=u, and t=t;, i.e., they correspond to distributions without the influence of thermogravi-
tation.

We obtain by solving Egs. (13) and (14) expressions for dimensionless velocity and temperature

- [S (Ma—n) VHOU*/0m) dn] (e —m)e/v) ™ dn (15)
oo
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U =U[ V4, V= 0 Uy It = (tw"—t)pcpv*/qw
Equation (12) for the radial-velocity component is too awkward to use for solving Eqgs. (15) and (16).
The curves calculated using Eq. (12) and depicted in Fig. 1 are therefore approximated by the expression
V=— 18T}y PrY2cosg (xm)

Using Eqgs. (4) and (17), we obtain a dependence that describes the profile of the axial component of
velocity and temperature,

Ut = []D+ -+ 2. 105—-—4'?77—.-_——"] cosQ (18)

T TO + 1.8- 105WV.—__T| cos ¢ (19)
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We assume that
Ujf=25Inn+ 3.5, & =0.2316/Re™%

for the velocity and frictional drag when thermogravita-
tion is absent.

Equations (18) and {19) demonstrate that the defor-
mation in the profile of velocity u and temperature pro-
file appear, in turn, in the vertical center-line plane.

A calculation of the influence of thermogravitational
forces solely in turbulent momentum transfer [4] yields
expressions for the distribution of velocity and tempera-
ture hear the upper and lower generatrices:

+——-‘—‘ 3;8' 03 r
U Uyt - i T M (20)
P+ 40388 __ ;
T+=T+3.8.10 cET 1 (21)

where the plus sign refers to distributions near the upper
generatrix and the minus sign, near the lower generatrix.

It is evident from Egs. (18)-(21) that the influence
of thermogravitational forces on the velocity and temper-
ature profiles for the two limiting cases (influence on tur-
bulent transfer or on the averaged flow) differs. In both
cases deformation of the profiles occurs in the same di-
rection and begins at approximately the same values of
the parameters.

In Fig. 2 the distribution of temperature in an air
flow for Re=5.2-10* and Gr=10° calculated using Egs.
(19) (curves 6) and Eq. (21) {curves 5) is compared to
that found experimentally (points 1 and 2). Curve 4 for
the temperature distribution in the absence of any influ-
ence of thermogravitation To+ is constructed using ex-
perimental data (points 3), which refer to the horizontal
center-line plane. It can be seen from Fig. 2 that the in-

Fig. 3 fluence of thermogravitational forces in both cases begins
to appear practically simultaneously. A calculation using
Eq. (19) corresponds better to the experimental temperature profile. A substantial deviation of the exper-
imental points from the calculated curve when ¢ =0 is due to the simultaneous influence of thermogravi-
tational forces on turbulent transfer and directly on the averaged flow. The influence on turbulent trans~
fer in this case is substantial.

In Fig. 3 calculated distributions of velocity u/u, and temperature v={ty—t}/(ty—1,), where ug and
tg are the values on the axes (curves 5 and 6) are compared to experimental data (points 3 and 4) in the
vertical center-line plane in an air flow. The distributions in the horizontal center-line plane (points 1
and 2) found experimentally are taken as the distributions of velocity (u/ug), and of temperature v, in the
absence of any influence of thermogravitation. The experimental points 1 and 3 and the calculated curves
5 refer to the values Re=5.2-10* and Gr=10? and the experimental points 2 and 4 and calculated curves
6, to the values Re=5.1-10% and Gr=1.55 - 10°. The variation in the Gr number under these conditions
leads to substantial deformation of the profiles in the vertical center-line plane, the profiles remaining
invariant in the horizontal center-line plane.

The distributions of u/u, and ¢ in the horizontal center-line plane entirely coincide with that de-
picted in Fig. 3 for smaller Gr and identical Re. This corresponds to the results of a theoretical solution
of Egs. (18) and (19), which demonstrates that the profiles of the axial-velocity component u and tempera~
ture in the horizontal center-line plane are not deformed at the initial stage of influence of thermogravi-
tational forces. The divergences between the calculated and experimental data in the upper part of the
flow (left side of figure) is greater than in the lower side (right side of figure). This is due to our ne-
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glecting the influence of thermogravitational forces on turbulent transfer, which are more substantial near
the upper generatrix than near the lower generatrix.

We calculate the variation in the local Nu number near the upper and lower generatrices from the
equations '

T+ = Pey/Nu = Tt — T," + T,* (22)

Using Eg. (19), we determine the Nu number at the initial stage of the development of secondary
free-convection flow,

Nu 340Gr cos @ N Pris—1q\1

Nuy t— Vﬁ;ne2 75 (1 ' 24 Re's ) (23)
£

Nup = RePrt/8

1.07 - 12.7 VE] B(Pr'n—1)

In Fig. 4 the variation of the relative Nusselt number Nu/Nu, at the upper and lower generatrices
when x/d>40 as a function of the Gr number for different values of Re and Pr is depicted. Experimental
data previously [1] obtained for a water flow (Pr=3.5, Re=1.2-10%, curve b) and experimental data for an
air flow (Pr=0.7, Re=5.1-10%, curve a) are depicted in the figure. Curves calculated for the correspond-
ing experimental data of parameters using Eq. (23) (solid lines) and using dependences obtained in [4],
which consider the influence of thermogravitation solely on turbulent transfer (dash—dot lines) are also
entered in Fig. 4. The agreement between the results of the calculation for air and the experimental data
appears satisfactory. The results of one of the calculations agrees better with the experimental data near
the upper generatrix and the results of the second calculation, with the experimental data near the lower
generatrix for the case of a water flow.

Such a difference in the nature of the variation of heat transfer may be due to the fact that the re-
lations obtained for the initial stage of the process do not completely take into account the influence of the
Pr number, which may otherwise appear at large Gr. Curves 1 in graph a of Fig. 4 correspond to Re =
1.2-10%, as does graph b. The-broken line in graph b was constructed using a previously obtained [1] em-~
pirical equation.

We may obtain from Eq. {(23) a relation that determines the "one-percent® variation boundary of Nu

on the upper (lower) generatrix as a result of the influence of thermogravitational forces. This relation
has the form

Gr = 3.1073 ) Pr Rey™ [1 + 2.4(Pr’s — 1) / Re'4| (24)
A comparison with experimental data obtained for a water flow and an air flow shows that Eq. (24)

sharply demarcates the region of noticeable influence of thermogravitation on local heat transfer in hori-
zontal tubes and the region of conditions lacking any thermogravitation influence.
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